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Echoing in a viscous compressible fluid
confined between two parallel plane walls
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The dynamics of a viscous compressible fluid, confined between two parallel plane
walls and excited by a sudden impulse transverse to the walls, is studied on the basis
of the linearized Navier–Stokes equations. It is shown that the time-dependent flow
depends strongly on the sound velocity and on the shear and volume viscosity. Under
favourable conditions an echoing effect can be observed, with a sound pulse bouncing
many times between the two plates. The velocity correlation function of a Brownian
particle immersed in the fluid is calculated in point approximation. It shows a similar
strong dependence on fluid properties.
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1. Introduction
The study of the dynamics of fluids confined to a small length scale is relevant in

microfluidics and biophysics. Brownian motion of a particle suspended in a fluid is
governed by hydrodynamic fluctuations which are affected by the geometry. It has
been argued by Hagen et al. (1997) and Pagonabarraga et al. (1999) on the basis of
mode-coupling theory that for a fluid confined between two flat walls the velocity
correlation function for motion parallel to the walls decays with a negative t−2 long-
time tail due to coupling to overdamped sound waves. Frydel & Rice (2006) showed in
a lattice-Boltzmann simulation that for motion perpendicular to the walls the velocity
correlation function shows oscillating behaviour due to reflection of sound waves
between the two walls. Later they showed similar behaviour for the Green function
of the linearized Navier–Stokes equations for a fluid satisfying perfect slip boundary
conditions at the walls (Frydel & Rice 2007). In both simulations and theory the
oscillations occur in a regime where the velocity correlation function and the Green
function are positive.

In an earlier work (Felderhof 2006), we have provided an analytic expression for
the Green function and the velocity correlation function of a Brownian particle for
a compressible fluid confined between two parallel plane walls and satisfying the
no-slip boundary condition at the walls. We showed in numerical examples that the
correlation function for motion perpendicular to the walls rapidly turns negative
before decaying in oscillatory manner. This behaviour differs qualitatively from that
found by Frydel & Rice (2006). In the following we analyse the theory in more detail
and show that a wide variety of behaviour is possible, depending on the velocity
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of sound, the shear and bulk viscosity of the fluid, and the mass and size of the
Brownian particle.

Under suitable conditions a persistent echoing effect can be observed in which
a sound pulse is reflected many times between the two walls. The strength of the
echoing effect can be estimated from a spectral function related to the Green function.
A conspicuous echo is signalled by a strong peak in the spectral function.

2. Linear hydrodynamics
We consider a spherical particle of radius a and mass mp , immersed in a viscous

compressible fluid of shear viscosity η, bulk viscosity ηv and equilibrium mass density
ρ0. The sphere and the fluid are confined between two parallel plates located at z = 0
and z = L. The fluid is assumed to satisfy no-slip boundary conditions at the two
plates and at the surface of the sphere. The centre of the particle performs small
motions about the rest position r0. In Cartesian coordinates r0 =(0, 0, h) with height
h satisfying h>a and h � L/2.

For small-amplitude motion the flow velocity v(r, t) and the pressure p(r, t) are
governed by the linearized Navier–Stokes equations (Acheson 1990):

ρ0

∂v

∂t
= η∇2v +

(
1

3
η + ηv

)
∇∇ · v − ∇p,

∂p

∂t
= −ρ0c

2
0∇ · v,

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

where c0 is the long-wave sound velocity. After Fourier analysis in time we find that
the equations for the Fourier components with time-factor exp(−iωt) are

η(∇2vω − α2vω) +

(
1

3
η + ηv

)
∇∇ · vω − ∇pω = 0,

∇ · vω − iβpω = 0,

⎫⎬
⎭ (2.2)

where we have used the abbreviations

α = (−iωρ0/η)1/2, Reα > 0, β =
ω

ρ0c
2
0

. (2.3)

The motion of the particle is determined by the applied force E(t), the force K (t)
exerted by the fluid and by its mass. The force exerted by the fluid depends linearly on
the applied force via the Navier–Stokes equations (2.1) and the boundary conditions.
Therefore the particle velocity U(t) depends linearly on the applied force. In Fourier
language the relation is expressed by

Uω = Y(r0, ω) · Eω (2.4)

with admittance tensor

Y(r0, ω) = Y0(ω)[1 + A(ω)C(ω)Fa(r0, ω)], (2.5)

where Y0(ω) is the scalar admittance for infinite space,

Y0(ω) = [−iωmp + ζ (ω)]−1, (2.6)

with friction coefficient ζ (ω). The coefficient A(ω) is given by a simple quadratic
expression in terms of the variable αa, and is independent of sound velocity and
bulk viscosity. The coefficient C(ω) is more complicated, and does depend on sound
velocity and bulk viscosity. The explicit expressions (Bedeaux & Mazur 1974) have
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been given in Felderhof (2005b). In the present situation the reaction field tensor
Fa(r0, ω) is diagonal by symmetry in the chosen system of coordinates, and the xx

and yy components are equal.
In point approximation, the reaction field tensor is given by

F(r0, ω) = lim
r→r0

(G(r, r0) − G0(r − r0)), (2.7)

where G(r, r0) is the Green function for the linearized Navier–Stokes equations for
the present two-wall geometry in the absence of the sphere, and G0(r −r0) is the Green
function for infinite space. The latter Green function is translationally invariant, and
given by a fairly simple expression. The Green function G(r, r0) has been calculated
elsewhere (Felderhof 2006), and is quite complicated. In the following we consider, in
particular, the zz component of the reaction field tensor (2.7) corresponding to the z

component of velocity in response to a force applied in the z direction.
We write the zz element of the reaction field tensor in the form

Fzz(h, L, ω) =
1

4πηh
Z(h, L, ω) (2.8)

with dimensionless function Z(h, L, ω). The latter is found as an integral over
wavenumber q arising from the Fourier transform in the x and y directions,

Z(h, L, ω) = h

∫ ∞

0

fz(q, ω)q dq. (2.9)

The integrand fz(q, ω) is expressed conveniently as a function of the variables

r =
√

q2 − µ2, s =
√

q2 + α2. (2.10)

We have used the abbreviation

µ = ω/c, Imµ > 0, (2.11)

where

c = c0

[
1 − iβ

(
4

3
η + ηv

)]1/2

(2.12)

is the frequency-dependent sound velocity.
The integrand in (2.9) can be written as the fraction

fz(q, ω) =
Nz(q, ω)

Dz(q, ω)
. (2.13)

We give here only the expressions for the case where the particle is located midway
between the two planes, corresponding to h = L/2, and refer for the expressions for
the general case to Felderhof (2006). We introduce the abbreviations

n = exp[rL/2], u = exp[sL/2]. (2.14)

In terms of these variables the numerator Nz(q, ω) is given by

Nz(q, ω) = 2[−(q2 − rs)3 + q2(q4 − r2s2)u2 − rs(q2 + rs)2u4 − 4q2rsu[q2 − rs − (q2

+ rs)u2]n + rs(q2 − rs)[q2 + rs − 4q2u2 − (q2 + rs)u4]n2 − 4q2rsu[q2

+ rs − (q2 − rs)u2]n3 + q2(q2 + rs)[q2 + rs − (q2 − rs)u2]n4]. (2.15)

The denominator Dz(q, ω) is given by

Dz(q, ω) = s(q2 − s2)[(q2 − rs)2(1 + u4n4) + 8q2rsu2n2 − (q2 + rs)2(u4 + n4)]. (2.16)

The expressions take account of the multiple reflection of waves at the two walls.
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Figure 1. Plot of the ψz(t)/ψ∞(t) for the case (c0, ηv) = (1, 0) (solid curve) and the case
(c0, ηv) = (1, 3) (dashed curve).

3. Reaction flow and velocity autocorrelation function
The reaction factor Fzz(0, ω) may be regarded as the Fourier transform of a function

ψz(t) according to

Fzz(0, ω) =
1

6πρ0h3

∫ ∞

0

eiωtψz(t) dt. (3.1)

The dimensionless function ψz(t) may be calculated by inverse Fourier transform
of the expressions derived in the preceding section. The function starts at zero,
since the sound wave needs a finite time to be reflected from the walls of the
duct. The asymptotic behaviour at long times of the corresponding function for an
incompressible fluid and a single wall at distance h from the source point is given by
(Felderhof 2005a)

ψ∞(t) =
−1

2
√

π
τ−3/2, (3.2)

where τ = t/τw with τw = h2ρ0/η. The behaviour is due to the second term in (2.7).
The asymptotic analysis in Felderhof (2006) shows that the function ψz(t) for the
duct has the same long-time behaviour.

It is convenient to choose the unit of length such that L =2. We have chosen the
source point midway between the two planes, so that h = 1. Furthermore, we choose
the unit of mass such that ρ0 = 1, and the unit of time such that η = 1. Then the only
free parameters are the velocity of sound c0 and the volume viscosity ηv . We consider
two values for the sound velocity: c0 = 1 corresponding to a very compressible fluid,
and c0 = 20, corresponding to a less compressible fluid. We also consider two values
for the volume viscosity: ηv =0, corresponding to a dilute monatomic gas, and ηv =3,
corresponding to the ratio ηv/η = 3.09 for water. In the simulation of Frydel & Rice
(2006), the ratio of volume viscosity to shear viscosity takes the value ηv/η =2/3. In
lattice-Boltzmann simulation the ratio ηv/η can be varied continuously from 0 to a
large positive value (Dellar 2001).

For the four cases we calculate the function ψz(t) numerically, and compare with the
function ψ∞(t) given by (3.2). In figure 1 we show the ratio ψz(t)/ψ∞(t) for the cases
(c0, ηv) = (1, 0) and (c0, ηv) = (1, 3), and in figure 2 we show the ratio ψz(t)/ψ∞(t) for
the cases (c0, ηv) = (20, 0) and (c0, ηv) = (20, 3). In the case (c0, ηv) = (20, 0) the function
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Figure 2. Plot of the ratio ψz(t)/ψ∞(t) for the case (c0, ηv) = (20, 0) (solid curve) and the
case (c0, ηv) = (20, 3) (dashed curve).
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Figure 3. Plot of the spectral function |Z(1, 2, ω)|2 as a function of frequency ω for
the case (c0, ηv) = (20, 0) (solid curve) and the case (c0, ηv) = (20, 3) (dashed curve).

shows damped oscillations with a period of approximately T0 = 2L/c0 corresponding
to reflection of the sound pulse, generated by the initial impulse, between the two
walls.

The echoing effect shown in figure 2 is due to the excitation of sound waves
which travel nearly perpendicularly to the two walls. Due to the kinematic boundary
condition at z = 0 and z =L the z component of the wave vector of planar sound waves
can take only discrete values jπ/L with integer j . In the lowest mode the z component
of velocity must be proportional to sin πz/L, corresponding to j = 1. Hence we expect
a resonance in the function fz(q, ω) for small q near ω0 = 2π/T0 = πc0/L.

Numerical investigation of the function Z(1, 2, ω) shows very complicated
behaviour in the lower half of the complex frequency plane. On the real axis the
absolute value of the function shows a peak near ω0, and for sufficiently small
dissipation also peaks near ωj = j ω0 with j odd. In figure 3 we show the behaviour
of |Z(1, 2, ω)|2 for the cases (c0, ηv) = (20, 0) and (c0, ηv) = (20, 3). In the first case,
there is a pronounced peak near ω0. The peak is still visible for ηv =3, but is much
lower and wider. The strong peak near ω = 0 corresponds to coupling to viscous
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Figure 4. Plot of the ratio γzz(t)/γ∞(t) for the case (c0, ηv) = (20, 0) (solid curve) and the
case (c0, ηv) = (20, 3) (dashed curve).

shear modes. The value at ω = 0 is |Z(1, 2, 0)|2 =Z0(1/2)2 = 0.9365 independent of the
parameters (Felderhof 2006). A Padé approximant analysis confirms the asymptotic
behaviour of the function ψz(t) given by (3.2).

In experiment or computer simulation, the velocity autocorrelation function of
a Brownian particle immersed in the fluid can be measured. We consider here, in
particular, the function

Czz(t) = 〈Uz(t)Uz(0)〉, (3.3)

where the angle brackets denote the equilibrium ensemble average at absolute
temperature T . According to the fluctuation-dissipation theorem the Fourier
transform of Czz(t) is given by

Ĉzz(ω) =

∫ ∞

0

eiωtCzz(t) dt = kBT Yzz(0, ω), (3.4)

where kB is Boltzmann’s constant. By substitution of Fzz(0, ω) into (2.5) we may
calculate the function Czz(t) numerically by inverse Fourier transform. It is convenient
to consider the normalized function

γzz(t) =
mp

kBT
Czz(t) (3.5)

with initial value γzz(0) = 1. We compare the function γzz(t) with the long-time tail
which it would have in infinite space, given by

γ∞(t) =
mp

12(πνt)3/2
, (3.6)

where ν = η/ρ0 is the kinematic shear viscosity. In figure 4 we show the ratio
γzz(t)/γ∞(t) for the case (c0, ηv) = (20, 0) and a neutrally buoyant Brownian particle
of radius a = 1/3. We show the ratio of the two functions in order to amplify
the long-time behaviour. At the last minimum shown, the function γzz(t) takes the
value γzz(2.06) = −6 × 10−5. The coupling to the sound modes again gives rise to
an echoing effect. The long-time behaviour of the function ψz(t), given by (3.2),
is precisely such as to cancel the t−3/2 long-time tail of the velocity correlation
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function in bulk fluid, as follows from (2.5). The presence of the walls causes a faster
decay.

The echoing effect has been seen in the computer simulation of Frydel & Rice
(2006), both for no-slip and perfect slip boundary conditions at the walls. Apparently,
the value of the sound velocity cs used in Frydel & Rice (2007, figure 5) equals
approximately c0/2. The behaviour of the function γzz(t) was shown for two other
numerical examples in Felderhof (2006, figures 5, 6 and 8), corresponding to fluids of
effectively larger compressibility (in figure 8 the function γzz(t) is shown, rather than
γxx(t), as indicated erroneously in the same paper).

4. Discussion
We have shown that the flow of a viscous compressible fluid confined between two

parallel plane walls depends strongly on sound velocity and viscosity coefficients. If
the fluid is excited by an impulse transverse to the walls, an echoing effect can be
seen with a sound pulse bouncing many times between the two walls, provided the
fluid is sufficiently incompressible, and correspondingly has a large sound velocity
c0. The period of oscillation is T0 = 2L/c0, and this must be short in comparison
with the viscous relaxation time L2ρ0/η. For too small sound velocity, the velocity
correlation function has decayed before significant echoing can be seen. The presence
of echoing behaviour is signalled by a peak in the spectral function |Z(h, L, ω)|2 near
the frequency ω0 = πc0/L. The flow is strongly affected by the ratio of volume to
shear viscosity ηv/η. Large volume viscosity leads to additional dissipation and may
suppress the echoing.

The analysis demonstrates that in fluid flow on a small length scale it is important
to take fluid compressibility into account. Besides the sound velocity, both shear
viscosity and volume viscosity must be known accurately in order to allow prediction
of the flow behaviour. The relevance of fluid compressibility to gas flow through a
microchannel has been discussed by Gat, Frankel & Weihs (2008, 2009).

The Green function is intimately related to the correlation function of thermal
velocity fluctuations in the fluid (Felderhof 2006). This suggests that the echoing
effect can be seen in a light scattering experiment.
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